
Abstract. The thermodynamic properties of Si clusters
are calculated using ®rst principles quantum methods
combined with molecular dynamics for simulating the
trajectories of clusters. A plane wave basis is used with
ab initio pseudo potentials and the local density ap-
proximation for determining the electronic energies and
forces. Langevin molecular dynamics simulates thermal
contact with a constant temperature reservoir. Vibra-
tional spectra, moments of inertia, anharmonic correc-
tions, and free energies are predicted for Si2 through Si5.
The translational contribution is based on the ideal gas
limit. The rotation contribution is approximated using a
classical rigid rotator. Vibrational modes are determined
from the dynamical matrix in the harmonic approxima-
tion. Corrections due to anharmonicity and coupling
between rotational and vibrational modes are ®t from
the molecular dynamics simulations.
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1 Introduction

The thermodynamic properties of clusters are of impor-
tance for prediction of nucleation rates and cluster size
distributions in vapor condensation. This predictive
ability is required to design systems intended to produce
such clusters for manufacturing. These systems typically
consist of expansion nozzles in which the plasma
condenses into clusters [1]. Unfortunately, there are no
experimental techniques available that can produce
a su�cient quantity of size selected clusters to enable
measurement of their thermodynamic properties. As a
consequence, nucleation models depend on theoretical
predictions of the cluster free energies. However, reliable

and accurate methods for predicting thermodynamic
properties are not readily available.

The standard reference for the thermodynamic prop-
erties of atomic Si, Si2, Si3, and bulk phases is the JANAF
tables [2]. These tables use simple analytic methods
combined with limited experimental data to estimate
thermodynamic properties. For example, Si3 is assumed
to be a linear cluster in the treatment of vibrational and
rotational modes. This assumption reassigns one degree
of freedom from rotation to vibration in contrast to
quantum calculations which give a triangular structure
[4]. The redistribution of contributions to the heat
capacity and free energies can make dramatic di�erences.

Alternative approaches to cluster thermodynamics
based on classical pair potentials combined with mo-
lecular dynamics (MD) or Monte Carlo simulations
constitute the bulk of the prior work on predicting
cluster thermodynamics [5±12]. Ab initio electronic
structure and MD methods are frequently used to de-
termine the zero-temperature geometry and properties
[4, 13±16].

Classical nucleation theory assumes that the free-en-
ergy dependence on size can be characterized by surface
�N 2=3� and volume �N� terms (where N is the number of
constituents of the cluster). This approach must break
down below sizes in which the cluster can no longer be
considered simply a fragment of the bulk material. This
is precisely the range of importance to the nucleation of
clusters.

Modern electronic structure methods combined with
MD or Monte Carlo simulations o�er the potential to
predict these properties reliably. However, limitations of
available computing power have hindered the exploita-
tion of this approach for the range of cluster sizes and
simulation times necessary.

The purpose of our work is to implement existing
pseudopotential electronic structure methods combined
with Langevin MD for the purpose of predicting the
thermodynamic properties of Si clusters. This e�ort
develops the necessary techniques and avoids potential
numerical errors associated with the use of these meth-
ods for this purpose. Extension of our approach toCorrespondence to: J.R. Chelikowsky
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larger systems will become simpler as greater computing
power becomes available.

Our approach resolves the thermodynamic properties
into contributions due to the binding energy, translational
and rotational motion, and vibrational modes. Contri-
butions due to electronic excitations are not calculable
with the electronic structure methods we employ (i.e.
density functional theory) and are neglected. The trans-
lational and rotational contributions arewell described by
classical statistical mechanics and this approach is
adopted for these terms. The translational term represents
a dominant contribution to the free energies and di�er-
ences in free energies for small clusters. The vibrational
modes determined from the electronic structure methods
are combined with quantum statistical mechanics. This
approach is necessary to give the proper low-temperature
behavior which is not accounted for in MD.

All deviations from ideal harmonic behavior evident
from the MD simulations, are combined in an an-
harmonic contribution. These deviations include the
coupling between rotational and vibrational modes,
liquid-like states, transitions between cluster poly-
morphs, as well as the non-linearity of the e�ective
interaction potential between atoms.

We identi®ed and corrected an artifact associated
with the use of numerical methods for evaluation of
local contributions to the Hamiltonian. When evaluated
on a real-space grid that these contributions produce a
background potential and give rise to anomalous heat
capacities as the temperature is reduced.

An alternative expression relating heat capacities to
energy variations in the MD is examined. For the
simulation times and parameters used in this work, this
expression does not provide a reliable estimate of the
heat capacity and we do not use it to determine the free
energies. However, this approach does give insight into
trends and provides a means of estimating the e�ects of
correlation between vibrational and rotational modes.

2 Methods

The thermodynamic properties of a macroscopic ensemble of
clusters of a given size are determined by the total-energy depen-
dence on con®guration and the relative phase space of these con-
®gurations. This energy dependence includes contributions from
the kinetic energy of the constituent nuclei, the electrostatic inter-
action between nuclei, and the electronic energy states of the elec-
trons. The latter two terms are associated with the potential-energy
dependence on structure and the contribution from electronic ex-
citations.

Calculations of thermodynamic properties from this energy
dependence may proceed either analytically from a knowledge of
the partition function over the phase space of a cluster, or statis-
tically from a sample of the phase space. For clusters of more than
a few atoms, the complete phase space of all possible con®gurations
is unmanageably large and, therefore, unknown. Molecular dy-
namics and Monte Carlo simulations can be used to provide a
statistical sample of this phase space. The potential energy associ-
ated with each con®guration sampled may be determined from ei-
ther a quantum calculation of the electronic energy state, or a ®tted
classical potential.

Our work employs MD combined with a quantum calculation
of the electronic ground state based on ab initio pseudopotentials
[17]. We use the Ceperley-Alder results from Monte Carlo simu-
lations of a homogeneous electron gas [18, 19] as parameterized by

Perdew and Zunger [20] for the exchange-correlation potential. The
Hartree term also depends only on the total electron density:

r2VH � ÿ4pq�r� : �1�
The basis set used here expands the single-electron wavefunction in
plane waves in a periodic supercell containing the cluster:

wk�r� �
X

j

a�Gj; k�ei�Gj�k��r ; �2�
where k are wave vectors, and Gj are the reciprocal lattice vectors
of the periodic supercell. This supercell geometry allows the use of
well-established energy band codes. The charge density used in the
Hartree and exchange-correlation terms is iteratively converged to
self-consistency from the wavefunctions.

The pseudopotential method accounts for the e�ects of the
chemically inert core electrons by means of an ``ion core'' potential
as seen by the valence electrons. Use of this pseudopotential
eliminates consideration of the core states and reduces the com-
putational e�ort applied to the valence states. The valence wave-
functions outside the core region and eigenvalues for the isolated
atom are preserved with this method. Within the core region,
relatively smooth-pseudowavefunctions replace the more complex
all-electron wavefunctions. The radial Kohn-Sham equation in
atomic units (a.u),

ÿ 1
2

d2

dr2
� l�l� 1�

2r2
� Vtot�r; q�r��

� �
rRnl�r� � �nlRnl�r� ; �3�

is inverted to give the screened pseudopotential:

V PP
scr;l�r� � �l ÿ l�l� 1�

2r2
� 1

2rRPP
l �r�

d2

dr2
�rRnl�r�� : �4�

The screening is removed by subtracting the Hartree and exchange-
correlation potentials as calculated from the pseudowavefunctions,

V PP
ion;l�r� � V PP

scr;l�r� ÿ V PP
H �r� ÿ V PP

xc �r� : �5�
Each angular momentum state �l�, produces a di�erent pseudo-
potential. The ionic pseudopotential operator is then given by:

V̂ PP
ion �r� � V PP

ion;local�r� �
X

l

DV PP
l �r�P̂l ; �6�

where V PP
ion;local�r� is a local potential,

DV PP
l �r� � V PP

ion;l�r� ÿ V PP
ion;local�r� �7�

is the semilocal potential for angular momentum l, and P̂l projects
out the lth angular momentum component of the wavefunction.
One of the ionic pseudopotentials V PP

ion;l�r� is chosen to serve as the
local potential.

The pseudopotentials for this work on Si were generated by the
method of Troullier and Martins [21, 22]. A common core radius of
2.25 a0 (a0 � 0:529AÊ ) was used for s; p and d angular momentum
states. The pseudopotential for the p state was used as the local
potential.

The nuclei follow classical trajectories in the MD simulation.
Additional forces are required to impose thermodynamic equilib-
rium with a reservoir at a de®nite temperature. This work uses
Langevin dynamics [23] for this purpose. The Langevin dynamics
equation of motion is

MI �RI � FI � ÿrRI E fRIg� � ÿ cMI _RI �GI ; �8�
where E�fRIg� is the total energy. The ¯uctuation forces, fGIg, are
random Gaussian variables. The dissipative friction factor, c,
de®nes the magnitude of these ¯uctuations:

Ga
I �t�Ga

J �t0�

 � � 2cMI kBT dIJ d�t ÿ t0� ; �9�
where a is the Cartesian direction index. The Hellman-Feynman
forces, ÿrRI E�fRIg� are determined directly from the plane wave
expansions [24].

3 Application to cluster thermodynamics

The computational methods described above provide a
means of modeling clusters in thermodynamic equilib-
rium with a ®xed temperature environment. The phase
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space of a given size cluster can be sampled by either a
large number of relatively short simulations, or a single
long simulation as used in this work. Su�ciently large
samples are statistically equivalent to a macroscopic
ensemble of clusters at a single point in time (ergodic).
The statistical sample must be large enough to sample all
regions of the cluster phase space that contribute
signi®cantly to the partition function. The con®guration
space grows factorially with cluster size, and there may
exist low-energy regions that are isolated by high-energy
barriers. A systematic exploration of all con®gurations is
not practical for clusters of more than a couple of atoms.
We rely on the MD simulation to access the important
minima.

All thermodynamic properties can be calculated from
the heat capacity over the temperature range of interest.
Statistical ensembles provide predictions of the heat
capacity by two methods. The most direct is to di�er-
entiate the energy as a function of temperature. The
second relates the heat capacity to the variation of
energy at each temperature [25]:

CV � @U
@T

� �
V
�
�E ÿ hEi�2
D E

kBT 2
; �10�

The latter method su�ers from contributions to the
variation in energy due to numerical uncertainties in
energy. In addition, this method requires larger samples
to provide statistically signi®cant results. The direct
approach provides a more reliable prediction of heat
capacity from our simulations.

The energy and heat capacity can be separated into
the component degrees of freedom.

Etot � Etran � Erot � Evib kin � Epot : �11�
CV � Ctran � Crot � Cvib kin � Cpot : �12�
The potential and vibrational kinetic terms together
form the total vibrational contribution.

Use of Eq. (11) in Eq. (10) relates the variations and
correlations for the degrees of freedom to heat capacity:

CV �
X

i

�Ei ÿ hEii�2
D E

kBT 2

�
X
i6�j

�Ei ÿ hEii��Ej ÿ hEji�

 �

kBT 2
; �13�

where i; j � tran, rot, vib, kin, pot. The terms in the
second summation represents the correlations between
the degrees of freedom. When the correlations are
negligible, the terms in the ®rst summation provide the
component heat capacities directly.

In the dilute limit, the contribution to the thermo-
dynamic properties due to the translational degrees of
freedom follows ideal gas behavior. The simulation re-
sults are consistent with ideal gas behavior and justify
the use of this approach. We did not consider the dense
concentration limit. To model the non-ideal behavior in
this limit would require simulation of a prohibitively
large number of clusters.

For an ideal gas of Si clusters consisting of N atoms
each, the translational contributions to the energy, heat
capacity and Helmholtz free energy are given by the
following expressions [25]:

Utran � 3
2 kBT ; �14�

Ctran � 3
2 kB ; �15�

Atran � kBT ln
2p�h

NmSikBT

� �3
2 p
kBT

" #
ÿ 1

( )
: �16�

The instantaneous rotational kinetic energy of a cluster
is given by an expression involving the principal
moments of inertia Ipi and corresponding angular
momenta Pi:

Erot � 1

2

X3
i�1

P 2
i

Ipi
: �17�

The principal axes and moments of inertia are the
eigenvalues and eigenvectors of the moment of inertia
tensor [26]:

I �
XN

n�1
mSi r2cm n1ÿ rcm nrcm n
ÿ � �18�

In the general case of an asymmetric cluster, the three
principal moments of inertia are all di�erent. Neither the
quantum states, nor the resultant partition function of
such an asymmetric top, can be expressed analytically.
Numerical methods are available for determining these
energies [27±29]. The e�ects of the quantization of ro-
tational energies are important only at very low tem-
peratures �<50K). For this reason, we used the classical
limit for rigid clusters and the classical behavior from the
MD simulations to determine the rotational contribu-
tions to the thermodynamic properties [30]:

Arot � ÿkBT ln
p
1
2

r

Y
i

2IpikBT

�h2

� �1
2

" #
; �19�

Crot � 3
2 kB ; �20�

for N � 3, where r is the symmetry number equal to the
number of rotational elements of the point group for the
cluster. For N � 2

Arot Si2 � ÿkBT ln
1

r
2IpkBT

�h2

� �
; �21�

Crot Si2 � kB : �22�
At higher temperature, the clusters do not behave as

rigid rotators and the coupling between vibrational and
rotational modes may be signi®cant. Fortunately, these
e�ects are signi®cant at temperatures in which the cluster
behaves classically. The MD simulations should there-
fore account for such e�ects. The rotational energy is
calculated directly from the MD results as follows:

L �
XN

n�1
mSi rcm n � vcm n ; �23�
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I �
XN

n�1
mSi rcm n � L

L

� �2

; �24�

Erot � 1

2

L2

I
; �25�

where L is the angular momentum vector, and I is the
moment of inertia along L.

The vibrational contribution to the thermodynamic
properties derives from highly coupled potential and
vibrational kinetic forms of energy. The electronic en-
ergy gives rise to a potential that depends on the relative
positions of the constituent atoms. The vibrational ki-
netic energy can be obtained directly from the MD and
should obey the law of equipartition in the classical
limit.

At low temperatures, the cluster is a solid-like linear
harmonic oscillator. At these temperatures, the quanti-
zation of vibrational states has a signi®cant e�ect on the
thermodynamic properties. Classical MD cannot re-
produce these e�ects directly. Instead, we determine the
force constants for the dynamical matrix from static
simulations and calculate the properties analytically.

The vibrational frequencies x are the eigenvalues of
the dynamical matrix M,

MDr � ÿmSix
2Dr ; �26�

where Drmi is the displacement from the equilibrium
position of atom m along direction i. The elements of the
dynamical matrix are given by:

Mmnij � @Fmi

@Drnj
; �27�

where Fmi is the force on atom m along direction i.
These frequencies determine the vibrational contri-

butions to the free energy [25],

Avib �
X3Nÿ6

k�1

�hxk

2
� kBT ln 1ÿ e

ÿ�hxk
kBT

� �� �
; �28�

and the heat capacity,

Cvib � kB

X3Nÿ6

k�1

�hxk
kBT

� �2
e
ÿ�hxk

kBT

1ÿ e
ÿ�hxk

kBT

� �2 : �29�

At elevated temperatures, the cluster displays anhar-
monic behavior and eventually approaches a liquid-like
state. The coupling between rotational and vibrational
modes becomes more pronounced at high temperatures.
The MD simulations account for these e�ects within the
important high-temperature classical limit. The di�er-
ences between the potential energy and heat capacity
from the MD results, and the theoretical results for a
classical linear harmonic oscillator are due to these ef-
fects. We ®t the energy di�erence to a low-order poly-
nomial,

Uanh � Upot ÿ 3N ÿ 6

2
kBT �

X
n�0

cnT n�2 ; �30�

with the requirement that the anharmonic contribution
to the heat capacity approaches zero at 0 K,

Canh �
X
n�0
�n� 2�cnT n�1 : �31�

This latter requirement applies to the classical oscillator
but also satis®es the quantum result that all contribu-
tions to the heat capacity must be zero at 0 K. The
correction to the free energy needed to account for these
e�ects is then given by:

Aanh � ÿ
X
n�0

cn

n� 1
T n�2 : �32�

A greater number of temperature points could allow the
use of higher-order ®ts. For larger clusters, the transition
to liquid-like behavior can result in more complex heat
capacity trends. In the bulk limit, the transitions are
abrupt, and the heat capacity is discontinuous, with a
latent heat associated with the transition temperature.

An expression for the thermodynamic properties of a
dimer is available based on an approximation to the
quantum mechanical partition function [31]. The inter-
action potential is expanded to third order in separation
distance. The coupling between rotational and vibra-
tional modes is based on perturbation theory. The
expansion of the interaction potential can be expressed
in a form consistent with the Morse potential [32]:

Epot�Dr� � De 1ÿ eÿbDrÿ �2
� De b2�Dr�2 ÿ b3�Dr�3 � � � �

h i
; �33�

where the interatomic force constant ke � d2Epot

dr2

� �
re

is
related to the Morse potential parameters:

Deb
2 � 1

2 ke : �34�
The fundamental vibration frequency and moment of
inertia at the equilibrium separation re are:

xe � me

c
� 1

2pc

����
ke

l

s
; �35�

Ie � lr2e ; �36�
where the reduced mass l � mSi

2 . The rotation constant
Be, ®rst anharmonicity constant xe, and the vibration-
rotation interaction constant ae are de®ned as:

Be � �h
4pIec

; �37�

xe � �hme

4De
; �38�

ae � 6
B2

e

xe

����������
xexe

Be

r
ÿ 1

� �
: �39�

With these approximations the free energy and heat
capacity are given by:

Aanh Si2 � kBT
8c
u
� d
eu ÿ 1

� 2xeu

eu ÿ 1� �2
" #

; �40�
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Canh Si2 � kB

�
16c
u
: � du2eu

eu ÿ 1� �2

� u2eu 2deuÿ4xeuÿ8xe� �
eu ÿ 1� �3 � 12xee

2u

eu ÿ 1� �4
�
; �41�

where

c � Be

xe
; �42�

u � �hme

kbT
1ÿ 2xe� � ; �43�

d � ae

Be
: �44�

A quantum statistical mechanics approach to anhar-
monicity and bending mode coupling with rotation for
linear triatomic systems is also available [33]. For such
linear triatomic systems, this approach provides an
alternative method to estimate such e�ects.

The Gibbs free energy is of interest in situations in-
volving equilibrium between clusters of di�erent sizes
(e.g. situations such as found in a Si plasma expansion
nozzle). The pressure-volume work term associated with
the Gibbs free energy is not directly accessible from our
MD results. Instead, we use the dilute ideal gas limit for
this contribution with

pV � kBT : �45�
At relatively high temperatures, depending on the

excitation energies, electronic excitations can contribute
to the thermodynamic properties. The energy levels
available for excited states depend strongly on the con-
®guration of the cluster. This dependence couples the
vibrational and electronic modes. Excited states cannot
be easily determined using density functional theory.
Treatment of excited states falls outside the scope of this
work.

4 Computational techniques

Any numerical solution to a set of integral-di�erential
equations introduces computational approximations.
These approximations can manifest themselves in anom-
alous predictions and guide the choice of precision in the
various modeling parameters. For example, the local
contributions to the Hamiltonian are evaluated on a
discrete real-space grid. These contributions include
the local part of the pseudopotential, the exchange-
correlation potential, and the Hartree term. Within this
approximation, the energies become dependent on the
position and orientation of the cluster with respect to the
grid. This variation corresponds to a real-space periodic
potential that is ®xed to the supercell rather than to the
cluster. The e�ect can be clearly illustrated with a single
Si atom. Physically a single Si should see no external
potential, even accounting for image e�ects from the
repeating supercell. However, the simulation cases
clearly show a periodic ``egg-crate'' potential, when the
Si is translated (see Fig. 1).

This arti®cial background potential gives rise to an
additional three translational and three rotational de-
grees of freedom in energy. Unless the temperature is
large compared to these potential wells, the additional
degrees of freedom contribute to the heat capacity. The
magnitude of this e�ect in terms of temperature can be
seen by reference to the right-hand scale shown in Fig. 1.
In the low-temperature classical harmonic limit these six
additional degrees of freedom should add 3 kB to the
heat capacity.

Initial results with MD simulations showed this
anomalous low-temperature heat capacity associated
with potential energy (see Fig. 2). These preliminary
cases di�er from the ®nal set in that they are run for only
200 rather than 4000 time steps. With this few steps, the
statistics are less stable. However, the anomalous low-
temperature heat capacity is clearly evident.

The grid spacing is determined from the number of
sample points required to use a fast Fourier transform
evaluation of the local terms with a cuto� corresponding
to that used in the plane wave expansion. Therefore, the
magnitude of the e�ect at ®nite temperatures can be
reduced by increasing the cuto� in the plane wave ex-
pansion. However, this approach only lowers the tem-
perature range over which the e�ect is important, and
does so at a high computational cost. A more direct
approach to removing the degrees of freedom is to use a
separate real-space coordinate system, attached to the
cluster, for the plane wave calculation of forces and
energies. This coordinate system would translate and
rotate with the cluster within the ®xed coordinates used
in the MD calculation of trajectories. A form of this
approach is used to remove this e�ect.

Ideally, one would like to have the plane wave co-
ordinates translate and rotate along with the cluster of
atoms. With respect to translation, this approach is
simple to implement by ®xing the coordinates with the

Fig. 1. Potential energy of a Si atom displaced along the x-
direction with y and z ®xed. The right-hand scale converts the
potential energy to temperature units in K. The grid spacing of 0.9
a0 results from a plane wave cuto� of 9 Ry and a 18 a0 cubic
supercell
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center of mass. For rotation, this approach cannot be
used in a physically simple way. The rotational motion
of asymmetric and non-rigid bodies cannot be described
analytically, and the numerical integration of the equa-
tions of motion used in MD do not rigorously conserve
angular momentum. For this reason, it is not possible to
determine precisely the net rotation of a cluster between
consecutive time steps. Attempts to approximate the net
rotation lead to long-term drift of the coordinates with
respect to the cluster, and do not remove e�ectively the
rotational degrees of freedom.

A less physical, but simple and e�ective approach, is
used to remove the rotational degrees of freedom. Three
atoms are arbitrarily chosen from the cluster to ®x the
angular orientation of the coordinates. The ®rst two
atoms de®ne a ®xed direction. The plane containing all
three atoms about this direction ®xes the angular posi-
tion of the coordinates. In addition, the e�ect of the
background potential is reduced by removing the net
force and torque on the cluster. This correction is per-
formed without distortion, for the cluster dynamics by
determining the resultant translational and rotational
acceleration arising from the Hellman-Feynman forces,
and by applying forces that uniformly remove the
accelerations. The e�ectiveness of this approach in
removing this artifact can be seen in Fig. 2.

Another potential artifact can in¯uence thermody-
namic quantities in MD simulations. Discretization of
the equations of motion can cause the system to not
conserve energy. For example, as a dimer vibrates, the
atoms may approach closer than energy conservation
would allow if the time steps are too coarse. This e�ect
could increase the vibrational kinetic energy above the
thermostat temperature. We chose a time step size of
200 a.u. by running simulations without a thermostat
(c � 0 in Eq. 8) to verify that the energy remained
conserved. Furthermore, the results of our simulations
do not show indication of any anomalous heating that
would result from too coarse a time step.

5 Simulations

MD simulations are intended to model a cluster in
equilibrium with a constant temperature environment.
Once a cluster has formed, it requires some time to
adjust structurally before it can be said to be in
equilibrium. This structure approaches a lowest-energy
con®guration as the temperature is lowered. The lowest-
energy structure at 0K is required for determining the
dynamical matrix and moment of inertia tensor. These
considerations guided the sequence of MD simulation
cases run. The various MD cases consume the bulk of
the computational resources owing to the large number
of time steps required. For these cases, we chose a plane
wave cuto� of 9 Ry, and a self-consistency convergence
of 0.01 Ry.

The ®rst set of cases is designed to produce the low-
est-energy structures at 0 K. The structures for Si2
through Si5 are shown in Fig. 3. Results from Hartree-
Fock [13] and pseudopotentials combined with a ®nite-
di�erence calculation [4] are shown for comparison. The

Fig. 2. Potential energy and the associated contribution to the
dimensionless heat capacity for Si3 from molecular dynamics (MD)
simulations. The heat capacity is based on Eq. (13). The circles and
squares correspond to results from original simulations and after
the algorithm was modi®ed respectively. The solid lines correspond
to an ideal linear harmonic oscillator

Fig. 3. The minimum-energy structures of Si2 through Si5. The
interatomic distances are in ÊA. The values without brackets are
from the current work. The values in parentheses are from
pseudopotential ®nite di�erence calculations [4] and those in
square brackets are from Hartree-Fock calculations [13]
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atoms of the cluster are initially arranged randomly in a
box of size 9.0 a0 at a temperature of 1500 K. The
temperature is then reduced to 0K in 500 steps of
200 a.u. The last step of this anneal provides the starting
point for subsequent simulations. This procedure for
determining the minimum-energy structure can yield
structures that correspond to local minima, but are not a
global minimum. Even for a cluster as small as Si5, a
single pass through this procedure did not yield the
lowest-energy structure. For Si5, we relaxed the structure
determined from earlier work [14] to con®rm that it was
lower in energy than the one produced by annealing
from a high temperature. In general, one should perform
several anneals from di�erent initial conditions to ®nd
the lowest-energy structure.

The most demanding cases are required for deter-
mining the thermodynamic statistics. The detail and
precision of the statistics are improved with longer
simulations at a denser set of temperatures. This study
examined a minimal set of four temperatures (500, 1000,
2000, and 3000K). These cases were run for 4000 time
steps of 200 a.u. or a total simulation time of 19.4 ps.
The ®rst 1000 steps were omitted from the statistics to
allow for equilibration.

The structure from the anneal is further relaxed for
200 time steps with higher precision simulation param-
eters (i.e. 32Ry cuto� and 0.001 Ry convergence) to
yield the con®guration for calculating the moment of
inertia tensor, and the equilibrium positions for the
perturbations used to set up the dynamical matrix. The
tighter numerical parameters are necessary to obtain
su�cient precision in the di�erences in forces needed in
the dynamical equation (Eq. 26). The perturbation cases
involve moving each atom along each direction by a
small amount in order to obtain the resulting forces.
Each atom is displaced along each direction sequentially
without returning to its initial position. The ®nal atom
movements correspond to returning the cluster to its
initial con®guration. This scheme ensures that the results
of moving N ÿ 1 atoms in a single direction is equivalent
to moving the remaining atom in the opposite direction.
As each displacement is made, the center of mass is ®xed
by displacing the other atoms together. Any remaining
net force and torque must be removed mathematically to
avoid spurious vibrational modes of the cluster. Resid-
ual torques and forces would cause the cluster to vibrate
rigidly as a whole about the initial position and orien-
tation. This procedure can be used to determine the
vibrational modes of a cluster of a general shape.
However, many clusters possess symmetries that allow
for fewer cases to determine the entire dynamical matrix.
These symmetries are associated with degeneracies in the
vibrational spectrum. The general approach outlined
above will split these degeneracies owing to the se-
quential displacements breaking the symmetry, and the
numerical variations between symmetric displacements.

Figure 4 shows the results for a simulation of Si4 at
3000K. The variations in energy illustrate the di�culty
in obtaining meaningful statistics within computation-
ally useful time limits. Local energy minima lead to the
long-term variations in potential energy as the cluster
oscillates about the corresponding structures.

6 Energy

An example of the total and component energies
averaged from the MD simulations for Si4 is shown in
Fig. 4. The lines corresponding to an ideal harmonic gas
of clusters provide points of reference.

Although the translational energies from the MD
simulations are not used directly for thermodynamic
properties, they do con®rm the thermostat temperatures
for the simulations.

The rotational energies are reasonably close to the
ideal classical behavior. This result justi®es the use of
Eqs. (19) and (20) with the moments and symmetry
numbers given in Table 1.

Figure 5 compares JANAF [2] and our results for the
rotational contribution to the Gibbs free energy. The Si2
comparison re¯ects the close agreement with the mo-
ment of inertia of 4:6� 105 mea

2
0 reported in JANAF.

This value is based on the spectroscopic data from
Verma and Warsop [34]. The large di�erences in Si3
re¯ect the assumption of a linear cluster in the JANAF
tables. A linear cluster has only two rotational modes,
rather than the three modes associated with our non-
linear structure.

Fig. 4. Average energies of Si4 fromMD simulations (upper graph).
Running averages of energy from a MD simulation of Si4 at
3000 K (lower graph). The running averages are taken over a
centered window of 4� 104 a.u. The solid lines correspond to an
ideal classical gas of clusters that vibrate as linear harmonic
oscillators and rotate as rigid rotators

24



The vibrational contributions to energy, especially
potential energy, show the largest di�erences from ideal
behavior. These di�erences are due to the non-linear
behaviors discussed in Sect. 2, and are accounted for in
the anharmonic contributions.

The case of Si2 allows for an independent method of
estimating the vibrational contribution directly from the
classical potential-energy partition function. The com-
bined rotational, vibrational, and anharmonic correc-
tion to the partition function is given by:

Zcomb Si2 � Zrot Si2 Zvib Si2 Zanh Si2

� lkBT� �32
r�h3

���
2

p

r ZRmax

0

r
re

� �2

e
ÿEpot�r�

kBT dr : �46�

By substituting the expressions for the rotational and
vibrational partition functions,

Zrot Si2 �
2IekBT

�h2
; �47�

Zvib Si2 �
kBT
�hme

; �48�

the anharmonic corrections to the partition function and
free energy are obtained:

Zanh Si2 �
�������������

ke

2pkBT

r ZRmax

0

r
re

� �2

e
ÿEpot�r�

kBT dr ; �49�

Aanh Si2 � ÿkBT ln Zanh : �50�
Since the potential energy depends only on the sep-

aration of the two silicon atoms, the con®guration space
can be computed easily. The integral must be truncated
at some reasonable Rmax due to the form of the potential.
The lowest free energy state for a single dimer in an
in®nite space is dissociated. The vast number of states
available to a disassociated pair contributes an entropy
advantage that dominates the free energy. In a physical
system the dimer is con®ned, or in the presence of other
clusters, thus limiting the entropy contribution to the
free energy. The ensemble average potential energy de-
rives from this partition function:

Upot �

RRmax

0

Epot�r� r
re

� �2
e
ÿEpot�r�

kBT dr

RRmax

0

r
re

� �2
e
ÿEpot�r�

kBT dr

: �51�

Numerical integration of Eq. (51) produces the results
in Fig. 6. The MD results are shown for comparison.
The remaining di�erences with MD are due to a com-
bination of statistical sampling, and the self-consistency
convergence variations.

Anharmonic corrections to the free energy are also
shown in Fig. 6. The correction from the MD simula-
tions, the classical partition functions, and the quantum
partition function are based on Eqs. (32), (50), and (40)
respectively. The JANAF [2] results are also based on
Eq. (40). The parameters required for Eq. (40) are given
below:

xe � 442 cmÿ1 510:98 cmÿ1
ÿ �

; �52�
Be � 0:252 cmÿ1 0:2390 cmÿ1

ÿ �
; �53�

xe � 0:00787 �0:00395� ; �54�
ae � 0:00234 cmÿ1 0:0013 cmÿ1

ÿ �
; �55�

where the values enclosed in parentheses are reported in
JANAF [2] and are based on the spectroscopic data of
Verma and Warsop [34]. Any of these approaches
provide a reasonable estimate for this small correction.
For consistency, the MD results are used for the
remainder of this work.

The average energies show a roughly symmetric dif-
ference from ideal behavior for the rotational and
vibrational kinetic energies. This symmetry indicates a
correct temperature for the system. Anomalous heating
would have tended to raise the vibrational kinetic energy
alone.

Table 1 Principal moments of inertia, in units of 105mea
2
0, and

symmetry numbers for Si clusters

Si2 Si3 Si4 Si5

I1 4.38 10.47 19.23 16.68
I2 4.38 7.17 14.07 16.30
I3 ± 3.30 5.16 16.30
r 2 2 4 6

Fig. 5. Rotational contribution to the Gibbs free energy of Si2 and
Si3 from JANAF [2] and our work. These curves are based on Eq.
(19) using the principal moments of inertia from the our calculated
structures and JANAF
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The vibrational frequencies determined from Eq. (26)
are given in Table 2. Results from various other calcu-
lations and experiment are included. Comparisons be-
tween the JANAF [2] and our results for the vibrational
contribution to the dimensionless heat capacity, CV =kB,
are shown in Fig. 7. The relatively small di�erences for
Si2 re¯ects the vibrational frequency of 510:98 cmÿ1 re-
ported in JANAF. This value is based on spectroscopic
data from Verma and Warsop [34]. The dramatic dif-
ferences in Si3 are due to the assumption of a linear
cluster in the JANAF tables. A linear cluster has two
linear vibrational modes and a doubly degenerate
bending mode. At high temperatures this di�erence
compensates the di�erence in the rotational contribu-
tion. However, at low temperatures these e�ects do not
cancel due to the drop in vibrational heat capacity.

The di�erence between the average potential energies
and ideal behavior for Si2 through Si5 were ®t to the
form of Eq. (30). Third-order ®ts appear to o�er the best
compromise for most of these clusters. For Si5, which
lacks a point at 3000K, the second-order ®t is a more
reasonable choice. These ®t coe�cients are presented in
Table 3.

7 Heat capacity

For the purpose of investigation, heat capacities are
calculated from the variations in component energy in

Fig. 6. Upper graph shows the average potential energies of Si2
fromMD simulations and from the classical partition function. The
solid line corresponds to a classical linear harmonic oscillator. The
lower graph illustrates the anharmonic correction to the free energy
of Si2 from MD simulations, the classical partition function, the
quantum partition function, and JANAF [2]

Table 2 Eigenmode frequencies in units of cm)1 for Si clusters. The
column titled P-W is from the current results using Eq. (26). FDP
refers to ®nite di�erence pseudopotential calculations [3]. H-F
are based on Hartree-Fock results [15]. LCAO is from a linear
combination of atomic orbital calculations [16]. Doubly degenerate
frequencies are indicated by the superscript*

Cluster Experimentala PW FDPb H-Fc LCAOd

Si2 511 442 520 ± ±
Si3 ± 160 ± ± ±

± 546 ± ± ±
± 577 ± ± ±

Si4 ± 89 160 117 55
± 253 280 305 248
345 341 340 357 348
± 443 460 465 436
470 471 480 489 464
± 504 500 529 495

Si5 ± 174* 180 170 178
± 234 230 201 232
± 378* 390 302 377
± 418 430 353 409
± 438* 450 480 440
± 486 490 468 476

a Refs. [2] and [35]
b Ref. [3]
c Ref. [15]
d Ref. [16]

Fig. 7. Vibrational contributions to the dimensionless heat capac-
ities of Si2 and Si3 from JANAF [2] and our work. These curves are
based on Eq. (29) using the vibrational frequencies from the
dynamical matrix and JANAF. The linear Si3 cluster assumed in
JANAF produces an additional vibrational mode as compared to
the results for our non-linear structure

26



the MD simulations (see Eq. 10). Graphs of the
dimensionless heat capacities of Si2 are presented in
Fig. 8.

The di�erence between the contribution from the
potential energy and the ideal behavior is most signi®-
cant and is not re¯ected in the change in average
potential energy with temperature. The variations in
potential energy are compounded by the self-consistency
convergence. The kinetic energy contributions to the
heat capacity are consistent with the trends evident in
the energy. Vibrational kinetic is slightly higher and
rotational is slightly lower than ideal behavior. The
translational heat capacity is essentially ideal. The co-
variance terms are generally small but not all negligible
in comparison to the variance terms.

8 Free energy

The methods in Sect. 2 are used to construct component
Helmholtz and total Gibbs free energies based on the
simulation results (see Fig. 9). These predictions are
close to the values from the JANAF tables. The
agreement is not surprising as the dominant term is
due to translational energy and the other components
are not too far from ideal. The bulk of the remaining
di�erence for Si2 is due to the neglect of excited
electronic states in the current work.

The predictions for Si5 are limited to 2000K due to
the results of our simulations at the higher temperature.

The 3000K simulation for Si5 resulted in a disassociated
Si atom with a Si4 cluster. Therefore, this case is not
representative of a Si5 cluster. Only the predictions
through 2000K are used in subsequent calculations.
This was the only case that exhibited a disassociation.

From the MD, the more interesting e�ects are cap-
tured in the anharmonic terms, which are a small con-
tribution to the total Gibbs free energy for the clusters
considered here. However, the vibrational and associ-
ated anharmonic contributions grow in proportion to
cluster size and eventually become the dominant con-
tributions to the free energy.

In order to calculate equilibria between clusters of
di�erent sizes, the Gibbs free energy should be converted
to a per mole of Si basis, rather than per mole of cluster.
In addition, the relative binding energies of the clusters
must be included. The calculated binding energy for
these clusters are given in Table 4. The ground-state
vibrational energy is included in the vibrational free
energy and not included in these bonding energies.

9 Conclusions

We have presented the results of calculations of the
thermodynamic properties of Si clusters through Si5,
based on MD combined with ®rst principle quantum
mechanical methods. These results represent a consider-
able advance over empirical potentials and provide
reliable values where experimental data is unavailable.
All parameters needed to calculate thermodynamic
properties for Si2 through Si5 are presented. Such
calculations would have applications in cluster nucle-
ation models.

As available computers become more powerful and
computational algorithms become more e�cient, the
methods developed here can readily be applied to larger

Fig. 8. Contributions to the dimensionless heat capacity of Si2
from MD simulations and Eq. (10). The ®lled and open symbols
correspond to the variances and covariances, respectively, of each
contribution to the energy. The straight lines correspond to an ideal
classical gas of clusters that vibrate as linear harmonic oscillators
and rotate as rigid rotators

Fig. 9. Gibbs free energy and components (kcal/mol) for Si2
through Si5 at 1 bar from MD simulations. The lines are based
on the current work. The open circles are taken from the JANAF
tables

Table 3. Polynomial ®t coe�-
cients for anharmonicity of Si
clusters, in units of Hartree K)n

(see Eq. 30)

n Si2 Si3 Si4 Si5

0 2.4465 ´ 10)10 1.6860 ´ 10)09 8.9204 ´ 10)10 2.0836 ´ 10)09

1 )3.0350 ´ 10)14 )5.1102 ´ 10)13 )7.8848 ´ 10)15
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clusters. These techniques are also applicable to clusters
formed of di�erent species.
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